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Passive tracking of passengers to analyse public transport
use in case of disturbances
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W. Axhausen · Francesco Corman

Abstract We tackle the problem of understanding multimodal passenger
flows to better address mobility. In particular, we use large scale, long-term
GPS passive tracking of travellers, to improve public transport operations in
urban areas. We combine this with realised operation data from a transit
operator. We develop an unsupervised tool able to detect passengers’ travel
behaviour and the exact public transport means they took, without any as-
sumption on the frequency of GPS data. Furthermore, we show the significant
advantage of using past user data to improve the detection algorithm, in par-
ticular to identify the points where users transfer. We test this approach in
Zürich and refer to the multimodal mobility supply available there. Ultimate
goal of this ongoing work is to understand from realised mobility how passen-
gers react to disturbances, especially for working days and peak hours, and
to the mitigation action undertaken by operators in case of disturbances, in
order to design good and effective mitigation actions.

Keywords Tracking · travel survey · public transport operations · GPS ·
mode detection · vehicle imputation · disturbances identification

1 Introduction

Urban areas are related to agglomeration effects of inhabitants and economic
value, and this trend is increasing. Mobility is a necessary service, for which
people have stringent economic and quality constraints, and increasing service
level targets. To achieve both, the entire mobility supply has to be considered,
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where public transport and collective mobility might have a large role. To un-
derstand some of those trends, travel diaries have been the primary source of
information on the dynamics of travel behavior capturing activity chains, trip
patterns, mode choice and time use. Due to their high response burden, tra-
ditional pencil-and-paper or telephone-interview surveys (which both are still
widely employed) typically ask respondents to report one randomly chosen
day only. Moreover, a lot of effort and time are required to conduct them and
they represent only a partial view of the whole dynamic behaviour. However, it
has already been shown that intra-person variability constitutes a substantial
share of overall variation in travel behavior (Pas and Sundar (1995)), which
limits the political and operational value of one-day data (Jones and Clarke
(1988), Susilo and Axhausen (2007), Schlich and Axhausen (2005)).
With this study, we aim to understand the behaviour of people by long-
duration passive tracking, without requiring any efforts from them and with-
out affecting their daily life. In this way, the use of locational data provided
by smartphones can reduce drastically the efforts to conduct travel surveys,
widening the scale of the observations and leading to a better representation of
the whole phenomenon. One of the drawbacks of smartphone-based tracking
systems is that energy-intensive GPS services may affect the battery cycle of
the smartphone. In fact, a high frequency of position requests can drastically
shorten the battery life, making it impossible to track users for a longer time.
To overcome these problems, we designed a low-battery consuming smartphone
application that passively collects location information with a low sampling
frequency, invisible to the user. Then, we designed different algorithms to un-
derstand the user’s travel behaviour and to deal with low-quality locational
data. In particular, we focused on activity and trip identification, mode de-
tection and vehicle imputation. The proposed mode detection algorithm does
not require any additional information from the users, it is completely unsu-
pervised, it does not rely on a statistical inference model and it is also able to
identify the exact public transport means a user took. In addition, we show
how it is possible to understand the users’ behaviour in case of disturbances
in the public transport network.
The key contributions are:

– Multi-modal transport operations are considered in a fully integrated way
– Large scale, long duration passive tracking data of travellers are collected
– User’s travel behaviour is derived from low-frequency GPS data, collected

by a smartphone application invisible to the user
– Mode detection and vehicle imputation are estimated by cross analysing

tracking data with realized transit operations
– User’s past travel information are used to improve the mode detection

The data collection of our study is based on a period of four weeks, during
which the smartphone applications passively collected users’ location infor-
mation approximately every 30 seconds. During this period, no respondent
interaction was required apart from a short entry questionnaire and installa-
tion of the app. Moreover, we collected the realised public transport operations



data of the city of Zürich during this period. Then, activity detection, trip seg-
mentation, mode choice and vehicle imputation are performed in a completely
unsupervised manner.
The paper is organized as follows: in section 2, the main related works are
described, even if a short literature review is presented at the begin of other
sections, as each step of the GPS data processing can be seen as unrelated to
the others. In section 3, the smartphone application used, the survey process
and the whole dataset are described in detail. In section 4, the data cleaning
procedure, performed before analysing the GPS data, is discussed. Section 5
presents the trip and activity identification algorithm. Section 6 describes the
trip segmentation algorithm, that divides each user’s trip in walks and stages.
Section 7 shows the mode detection algorithm and the final results. Section 8
describes how understand the user’s behaviour in case of disturbances. Then,
in section 9 there are the conclusions.

2 State of the art

GPS loggers opened new doors to collect longer-term travel diaries at a sub-
stantially lower response burden (Stopher et al (2008)). Data collected with
GPS loggers mounted in private cars also showed that traditional survey meth-
ods were prone to substantial under-reporting of trips (Bricka and Bhat (2006))
limiting the validity of their results. First studies using personal GPS loggers
for travel diary collection were very promising, although a substantial adminis-
trative effort was required for distribution of the devices and a prompted recall
to obtain additional information necessary to interpret the GPS records (Bo-
hte and Maat (2009); Oliveira et al (2011); Schuessler and Axhausen (2009);
Montini et al (2014)). Lately, the focus has shifted away from GPS loggers
towards smartphone apps to collect travel diaries (Cottrill et al (2013)). Be-
sides the benefit of an easier survey administration, respondents are also less
likely to forget to take their smartphone along for a trip (compared to GPS
loggers). Moreover, various systems have been developed for the transport
mode detection based on GPS data collected by smartphones (two related
literature reviews are Wu et al (2016), Nikolic and Bierlaire (2017)). So far,
most smartphone-based tracking systems use a prompted recall approach: in
this setting, respondents are asked to manually add further details such as
trip purpose, mode, group size, transit fare, parking fees etc. to each trip.
Although some systems already employ forms of statistical learning to make
suitable suggestions, a substantial amount of user interaction to annotate or
validate trip information is still required. Other approaches based on passive
tracking, with particular focus on transit, have been focusing on smart card
data. In those cases, mode choice, vehicle choice, and even timing cannot al-
ways be precisely established (see for example the review of Pelletier et al
(2011)).
So far, most of these methods have been tested on small datasets: for instance,
Tsui and Shalaby (2006) collected 60 trips with the help of students; Stenneth



et al (2011) recorded information about three weeks for six people. The only
works based on a dataset of considerable size, rely on dedicated GPS devices,
making the collection of the data more complicated and expensive. Zheng
et al (2010) collected information of 65 people for a period of 10 months and
Schuessler and Axhausen (2009) build a dataset from 4882 people (requiring
multiple waves to limit the number of devices).
Among the studies concerning the automatic mode detection from GPS data,
some authors (Schuessler and Axhausen (2009), Stopher et al (2005), Zhu et al
(2016), Zheng et al (2010), Zhang et al (2011)) addressed transport mode de-
tection by dividing the problem in different sub-tasks (with small variations
among them):

– Data Cleaning
– Trips and Activities detection
– Trip segmentation
– Mode detection

Also this paper follows this structure. Since these tasks are often considered
as separate problems, at the begin of each section a short literature review is
introduced.

3 Smartphone Application and Dataset

To allow collection of long-term travel diaries with minimal respondent inter-
ference, a new smartphone app, the ETH-IVT Travel Diary, was developed.
The app was tested in a field trial with students at ETH Zürich. Analyses in
the following sections are based on the records from this field trial.

3.1 App Design

As described above, the primary purpose of the app is to collect travel diary
data during multiple weeks or even longer periods of time. Hence, to keep
response burden at an acceptable level, the app has to be minimally intrusive
in that it must not require regular interaction with the respondent or substan-
tially affect the device’s battery life. With respect to battery life, this means
that the sampling frequency cannot be set arbitrarily high. Yet, because data
is acquired during a long duration and because travel behaviour follows regular
patterns (Susilo and Kitamura (2005)), lower sampling rates can be afforded.
Taking into account these design considerations, a passive tracking app with
minimal user interaction was developed. Respondents can download it from
Google Play store1. The user interface only consists of a brief description of
the study, a field to enter the respondent’s individual ID and a button to start
data collection. Once launched, data collection is performed in a background

1 An iOS version of the app is under development.



process, which remains active until the end of the study period. Even after re-
start of the smartphone, data collection will resume automatically. During the
study period, a notification is displayed reminding respondents of the ongoing
data collection. At the end of the study period, the app shows a notification
to remind the respondent to uninstall the app.
As direct access to the device’s GPS is not possible, ETH-IVT Travel Diary
requests location data from Android’s internal location services. To reach an
optimal tradeoff between data quality and battery consumption, a three-layer
approach was used:

– high-priority requests every 45 seconds,
– low-priority requests every 15 seconds,
– zero-priority requests every second.

It is important to note that update of location information is at discretion
of Android’s location services. Typically, location is determined using GPS,
Wi-Fi and Bluetooth. Update frequency and sensors used usually depend on
the frequency and priority of location requests of all apps and varies by oper-
ating system version and device. Hence, records are usually more accurate and
precise when respondents use fitness trackers or navigation apps in parallel.
The app makes further use of such data by the zero-priority requests, which
skims the latest available location information without triggering an update.
Data was uploaded to a secure server about every six hours. However, in con-
trast to prompted-recall approaches employed by earlier studies, no interface
is provided for respondents to (re)view their records. To allow for flexibility
in the survey design, study duration, upload frequency, sampling frequencies
and priorities can be configured remotely.

3.2 Data Collection

To complement the travel diary data with additional information on respon-
dents and collect their feedback to the app, a three-step survey set-up was
designed:

1. entrance survey capturing information on socio-demographic background,
mobility tool ownership and attitudes;

2. four-week travel tracking using the app;
3. (optional) exit survey to collect feedback and for validation of selected

records.

Students enrolled in a civil engineering program at ETH (N = 1209) were
invited to the field test via e-mail in late March 2018. They were promised an
incentive of CHF 20 for their participation. No reminder was sent. 102 stu-
dents signed up for the study, of which 63 hold an Android smartphone and
were therefore eligible for the first field trial, which 48 respondents completed.
However, for 9 of those respondents, data quality did not allow further analy-
ses. Hence, travel diaries of 39 respondents were used in this paper. They were



complemented by the traces of 2 of the co-authors. At the end of the study,
35 respondents completed the exit survey and provided feedback to the app.
In total, 1 032 days’ worth of travel diaries were collected, which corresponds
to an average of 25.2 days per respondent.
Data quality varied substantially between different users. Further analyses will
be conducted to study the effect of smartphone user types and devices. Yet,
user-friendliness was generally rated high among respondents with 80% stating
that battery consumption was acceptable. This is an acceptable result given
that apart from performing the tracking, the app requires respondents to have
their GPS turned on at all times, which in itself already increases battery
consumption.

4 Data Cleaning

GPS technology is widely used in different devices to capture the most ac-
curate position for the users. Nevertheless, it is often error-prone and then it
needs a pre-processing phase to correct it. Two main features are used to filter
erroneous GPS points: speed and the angle between points. For each point
the speed is calculated from the time and the position of the previous point
recorded for the user. Points with speed equals to 0 are removed, because it is
probable the smartphone merely returned the previous recorded position and
not the real one. Furthermore, points with speed ≥ 150 Km/h are filtered, as
the maximum speed accepted. A second feature considered is the angle be-
tween points. In particular, a point that forms a very strict angle with the
following and previous points and which is far away from the previous, is con-
sidered as fake GPS point that does not represent the real path of the user,
but more probably it is a consequence of the loss of signal, urban canyons or
other sources of error. For this reason, all points with an angle < 15 and a dis-
tance from the previous point > 60 meters are removed. This rule is applied
iteratively to all user’s points, until any point is removed. After this filter-
ing process, a Kalman Filter is applied to smooth the two space coordinates
(longitude and latitude) of the GPS data and improve the quality.

5 Trip and Activity Identification

As the smartphone application is always active, it records the user’s position
continuously through the day. Therefore, each user’s daily data have to be
divided in trips and activities. An activity is a sequence of points near to each
other, indicating that the user is in the same place for a long period. Instead,
a trip is a connection between two activities, representing a movement of the
user to a different place.
Different techniques have been applied in literature for this problem. So far,
all of them are based on the detection of the activities and consequently the
trips. One of the most used is the density-of-points based method (Stopher



et al (2005), Schuessler and Axhausen (2009)). Since the recording of the data
is continuous as long as the application is active on the smartphone, when a
user is standing in one place the application registers a bundle of points near
the same place. For that reason an activity can be detected where the density
of points in a certain area is greater than a specific threshold. Schuessler and
Axhausen (2009) computed a value of density for each GPS point by counting
how many of the 30 preceding and succeeding points are within a 15 meters
radius. An activity occurs when there is a sequence of points with a density
higher than 15 for at least 10 points or 300 seconds.
In this paper, a density-of-point based strategy is used, which has some im-
portant differences from those mentioned above. The major one is that the
algorithm does not rely on the number of GPS points (like Schuessler and
Axhausen (2009)) or on their frequency. In fact, the algorithm can not rely on
them, because the frequency of the acquired data is variable due to different
factors as the location, the other application in background or the interaction
between user and smartphone. For that reason, we define an activity when
there are at least 2 successive points for at least 15 minutes in a radius of 250
meters. We choose 2 points because with 1 point it is not known if it is an
activity or if no signal has been received. More formally, an iterative algorithm
was developed, iterating on each point P: if there are following points in 250
meters of radius for at least 15 minutes, P is the starting point of the activity
and the last point in the radius is the ending point. The radius, for each point
Q following P, has the center in the average point of all the points from P to
Q (excluded).
We choose a very high radius compared to Schuessler and Axhausen (2009)
and Stopher et al (2005) (15 and 30 meters), to better deal with the low
precision of the GPS data and the position jumps that eventually can occur.
Nevertheless, very short walks, starting and ending near an activity, can be
considered as part of the activity, because they are still in the radius. It is
possible that the first and last points of an activity are in reality points of the
previous or following trip, so two rules are added to the algorithm to better
assign these extreme points. After that an activity is found, the middle point
is computed as the average of the coordinates of its points.

– If the distance from the starting point to the middle point is greater than
two times the average distance of each point to the middle point, an activity
is not identified and the algorithm tries from the next point.

– If the distance from the end point to the middle point is greater than two
times the average distance of each point to the middle point, check the
second-last as the ending point.

Figure 1 shows an example identification of an activity. In particular, the first
and last points, relating the user’s arrival and departure, are not included in
the activity, even if they are in the radius and they are not the farthest from
the center.
Furthermore, in case of multiple erroneous recording of GPS position, caused
often by detecting the position near cell sites or antennas, an additional rule



Fig. 1 Activity identification: The red points are in the activity, the green points are the
last points of the previous trip, the blue points are the first points of the following trip.

is added to avoid the detection of false positive trips: a trip with origin and
destination closer than 250 meters and with a duration less than 5 minutes, is
merged between the previous and following activity to one single activity.

6 Trip Segmentation

The trip segmentation process consists of partitioning of the users’ trips in
walks and stages. A walk occurs when the user is walking or he is just waiting
for a means of transport in a single place, while a stage is a movement of the
user done with the help of a transport means, that can be a car, a bus, a
train, a bicycle or other vehicles. This step is the most challenging part of the
mode detection process, in fact, there is not a common solution in literature to
address this problem and different studies used different sensors or they rely
on a high sampling frequency for the GPS data.
The most relevant feature, on which all the trip segmentation algorithms found
in literature are based, is speed. For instance, Biljecki et al (2013) considered
the stops of the user as potential transition-points between two different modes.
A stop is detected when consecutive points in an interval of 12 seconds do not
have a speed higher than 2 km/h. Gong et al (2012) applied several rules to
identify a walk segment, and most of them rely on the speed of the points.
Between two different transport modes the user usually walks or stops for a
certain period, so Zheng et al (2010) considered a threshold of speed and of ac-
celeration to divide the points in walks and non-walks, then it merges segments
of points of the same type according to rules depending on the length of the
segments. A paper using a similar procedure is Zhu et al (2016), that applies
a label specification step to mark the points as walk or non-walk according to
two threshold values of speed and acceleration. Then the label of each point



is adjusted according to the near points: if at least M (value dependent by the
number of points) of the previous and posterior points have a different label,
change the label of the point. Zhang et al (2011) identifies different stages
looking for stops. It considered the heading change as a main parameter for
the identification of stops, because stops are usually accompanied with large
magnitude values in heading changes. Furthermore, Liao et al (2006) used also
GIS information for trip segmentation, in particular the proximity to transi-
tion locations such as a bus stop. However, this information can not be used
in this case, because Zürich has a high density of bus stops and the GPS error
can be very high.
The GPS data recorded for this study have a low sampling frequency that is
not fixed and it can vary considerably with different paths or users, so the
algorithm developed can not rely on the frequency or on the number of points.
Furthermore, the heading change and a derived acceleration are not usable for
this purpose with this sampling frequency. A specific segmentation algorithm
able to deal with irregular sampling frequency and based only on the GPS
position and a derived speed had to be designed. Before computing the trip
segmentation for each trip, if in a trip there is an absence of signal for more
than 10 minutes, it is divided in two different trips. This time is considered
as a threshold to avoid error during the segmentation. Our trip segmentation
algorithm aims to divide a trip to a sequence of walks and stages (transfers
are considered as walks). It is based firstly on a label specification step, simi-
lar to Zhu et al (2016), but considering the adjacent points according to time
and not to the number of points. Then, the consecutive points of the same
type are grouped in sequences, and these latter are merged according to rules
depending on duration, distance and speed. The details of the segmentation
algorithm can be found in Marra et al (2018).
There are few cases in which the trip segmentation will fail: a fast run can
be detected as a stage; a rapid change of bus, with the second one departing
quickly after the arrival of the first one, can be detected as a single stage; a
vehicle stuck in traffic for a long time can be detected as a walk. To overcome
these problems, the information obtained from the following mode detection
algorithm will be used to improve the trip segmentation. This is explained in
Section 7.
An example of these steps until the trip segmentation, can be seen in Figure
2. The user’s real path is the following: from the activity A the user had a
short walk (B) to take a tram (C). Then the user waited for a bus in D, took
the bus (E) and arrived at F to stay there a while. Later the user took a
train (G), stayed at the Zürich Main Station (H), walked to a stop (I), took a
tram (J) and walked to home (K). Even if the sampling frequency is different
through the day, the segmentation algorithm is able to divide correctly each
trip. In particular, the frequency is lower when the user is on a train (G) or
in a tunnel (the upper-right part of C and J). It is also lower on I, probably
because the main station has a underground part.



Fig. 2 Trip segmentation of a user’s day (from A to K): activities (red), stages (green),
walks (blue). The table gives the average time between two points (sampling frequency) for
the segments and the activities.

7 Mode Detection

Many methods have been studied to automatically collect information about
the user’s travel behaviour from raw GPS data. One of the major problem is
the identification of travel mode. In the first papers the GPS data have been
collected with the help of dedicated GPS devices (Patterson et al (2003), Gong
et al (2012)), that are expensive for the researchers and cumbersome for the
users. In the last decade, researchers started to look at smartphones as a pow-
erful source of data for travel surveys. In fact, they are equipped with a GPS
module, most of the people travel always with one of them, and they have also
other sensors that can be useful for this purpose. However, the battery life is
still a problem (Wu et al (2016)), especially when a high sampling frequency
is specified. For this reason, we developed an approach able to deal with a low
sampling frequency.
One of the most recent review of transportation mode detection using GPS
data collected by smartphones is presented by Nikolic and Bierlaire (2017).
They stated that there are two categories of methods for mode detection:
machine learning methods and hybrid methods, also relying partially on ma-
chine learning techniques or probabilistic models like Hidden Markov Models
(Reddy et al (2010)). Wu et al (2016) made a similar systematic review and it
asserted that the methodology adopted by the reviewed works is rather simi-
lar. First, some features are extracted from the sensors, then a training set is



built to train a machine learning algorithm, and then the algorithm is used to
predict unseen data. For instance, Zheng et al (2010) proposed a supervised
learning approach, using a decision tree, to infer transportation modes from
GPS data. It is able to detect walking, driving, taking a bus and riding a
bike. Stenneth et al (2011) compared different inference models like Bayesian
Net, Decision Tree, Random Forest, Naive Bayesian and Multilayer Percep-
tron. It is able to detect different transport means as car, bus, train, bike,
walking and stationary. Furthermore, it rely not only on the GPS data, but
also on transportation network data. Reddy et al (2010) built its classification
system using also accelerometer data in addition to GPS data and it is able
to detect among stationary, walking, running, bike or motorized transport. It
used a hybrid approach based on a decision tree and a Hidden Markov Model.
Montoya et al (2015) build a system based on a Bayesian network to infer the
transport mode from smartphone data (GPS, wifi, accelerometer) and trans-
port network information like the public timetable. Finally, Patterson et al
(2003) presented a Bayesian model inferred in an unsupervised manner. It can
distinguish between walk, drive or taking a bus and it also showed that the
use of additional knowledge like bus stop location can improve the algorithm.
Except Patterson et al (2003), all of the mentioned studies rely on inference
models that need a training set to work. For this reason a manual labelling
of the transportation modes is required, that can be expensive or difficult to
obtain, limiting the dimension of the dataset. In addition, most of the mode
detection studies in the literature lack information about the sampling fre-
quency of the GPS data or did not compare their algorithm with different
sampling frequencies. Instead, in this study we consider this parameter crucial
for a mode detection algorithm, because only with a low sampling frequency,
the battery of the smartphone is not affected and then the algorithm can be
used in practical applications. Therefore, for our purpose to have a system
invisible for the users and that can easily work with a large number of people,
we choose a data-driven approach largely different from the previous papers.
One of the most important differences is that the algorithm is completely un-
supervised and it does not use any statistical inference model. In fact, it is
mostly based on the realised operations data. Only Stenneth et al (2011) of
the cited works used this type of data, but just to build features for their
inference model. For buses, trams and trains travelling in the city of Zürich
the realized data are publicly available (SBB (2018)): more specifically, for
each stop of each vehicle the scheduled and realized times of its arrival and
departure are available. Since walks are detected during the trip segmentation,
the mode detection is able to label a stage as a bus, tram, train or otherwise a
private vehicle. Moreover, for the public transport it detects the exact vehicle
that the user took.
The algorithm starts as following: all the public transport stops in a radius
R near the starting point of the stage are detected, then all the vehicles that
are stopping at one of these stops in ± T seconds from the starting point are
selected. The same method is applied for the end point, then the intersection
of the vehicles in the two groups returns a list of all the vehicles passing near



Fig. 3 Mode detection likelihood: The two sub-functions PathDistance and TimeDifference.

the user at the begin and at the end of the stage. At this point, a likelihood
function is applied to each element of the list to select the most probable ve-
hicle the user took. Instead, if the list is empty, that means the user used a
private vehicle. For the experiments in this paper the parameters have been set
to T = 250 [sec.] and R = max(250,min(accuracy,400)) [m] where accuracy
is a value in meters provided by the smartphone for each GPS point.

7.1 Likelihood function

The likelihood function for the mode detection is a combination of two func-
tions comparing the paths of the user and of the vehicle, as shown below:

L = λ ∗ TimeDifference+ (1 − λ) ∗ PathDistance

TimeDifference is the sum of the difference between the departure times and
the difference between the arrival times of the user and the vehicle. PathDis-
tance is the average euclidean distance between the user’s points and the
vehicle points. The vehicle points are calculated at the same timestamps of
the user’s points interpolating from the arrival time at each stop. Then, these
two values are scaled like in Figure 3 to be comparable. A value of λ = 0.5
is chosen because using only the TimeDifference can bring to false positive
matching with vehicles that had a different path, meanwhile the PathDistance
is not reliable if there are few user’s points. In the end, the value L is multi-
plied by the times that the vehicle appeared in one of these lists of candidate
vehicles of stages in the same trip. The idea behind is that if a single vehicle
is a candidate to match different stages of the same trip, it is probable that
the user took only one vehicle to make all the stages.

7.2 Mode detection improvements

In order to improve the mode detection algorithm and to overcome the errors
obtained during the trip segmentation, three different rules are applied:



Table 1 Dataset information: values of the different components obtained applying the
whole mode detection algorithm to the dataset.

Quantity
Activities 2931
Trips 2820
Walks 7031
Stages 4868
Detected stages 1954
Not assigned stages 522
Far stages 2392
Past Data Detected stages 128

– If in a trip there is the pattern stage-walk-stage and the two stages are
not assigned to a means, consider the three segments as a single stage and
compute the mode detection.

– If in a trip there is the pattern stage-walk-stage and the vehicle detected
for the two stages is the same, consider the three segments as a single stage
performed with that vehicle.

– If a stage is not assigned to a means, look in the user’s past data for a
possible transfer point in the path, and try to detect two different means
for the whole stage.

The first two rules are introduced in case of a wrong detection of a walk
segment. For instance, this can happen if a vehicle is stuck in traffic. The last
rule is introduced in case of a walk segment is not detected, that can happen if
a transfer is performed quickly. In this case, the average point of the previous
activities and the starting and ending points of the previous stages of the user
are considered as potential changing points, if they are in a distance R (250 m)
from one point of the user’s path. If some of these changing points are near to
each other (250 m), the average point is considered, because they represent the
same location. This represents a first attempt, never described in literature, to
use the user’s past data for a mode detection algorithm. In that way, only the
user’s relevant places are considered, useful in particular for datasets spanning
multiple weeks with a huge quantity of data recorded for a single user.

7.3 Results

The user’s GPS data are recorded over a period of four weeks, then it was not
asked to the participants of the experiment to manually label their movements
and the travel modes they took in this period. For this reason, a ground truth
for the mode detection is not available, but the quality of the algorithm can
be assessed comparing the user’s path with the path of the detected trans-
port mode. Table 1 gives the results of the mode detection algorithm and the
dataset, to give a better idea of its dimension. Regarding the stages, they are
divided in three different groups: detected, not assigned and far. A stage is
marked as far if it is performed partially or completely outside the city of



Zürich; it is marked as detected if the mode detection algorithm found a mode
for it; instead, it is marked as not assigned if the algorithm did not find a
match to a means. In this last group there are principally stages performed
with a private vehicle, but also public transport stages that are not detected,
because of bad GPS quality or errors during the activity identification or trip
segmentation steps. Further, in the detected group there are also false positive
detections, that can occur only in case of data with a very low quality or, for
instance, if the user is always behind a bus and then the algorithm match the
bus as the transport mode. Nevertheless, this case is considered rare because
usually a car can overtake or has a different lane, and a bicycle has a higher
travel time. The Past Data Detected stages, are the stages detected thanks
to the use of the user’s past data, as described in Section 7.2. Without using
these data, the Past Data Detected stages would have been labelled as not
assigned, with a increase of the not assigned group of the 24.5%. This value
clearly shows the importance of information about the user’s past travel be-
haviour for a mode detection algorithm.
It is important to notice that the main factor influencing the quality of the
mode detection algorithm is the quality of the data, while the sampling fre-
quency is less relevant. In fact, in the extreme case of only two points, with
the exact position and time, one at the origin and the other at the destination
of a user’s path, the algorithm detects if it is a stage from its speed and the
exact mode from the departure and arrival times of the modes in the network.
To measure the quality of the mode detection, the TimeDifference function
(described in Section 7.1) is used. In fact, if the difference between the ar-
rival and departure times of the user and of the vehicle is low, it is reasonable
to think the detection is correct. The PathDistance function was not chosen
because a user’s path can be very noisy and then not comparable with the
path of the detected mode even with a correct detection. The distribution of
the TimeDifference of all the detected stages in the dataset is shown in Fig-
ure 4. This value, the sum of the differences between the arrival times and
departure times of the user and the vehicle, is caused by two main factors:
the trip segmentation and the sampling frequency. In particular, an erroneous
trip segmentation can identify the beginning or the end of the stage at some
points before or after the real one. Moreover, often with a low sampling fre-
quency there are no points in the exact time the user took the means. For these
reasons a mean value of 91 s and a median value of 68 s for the TimeDiffer-
ence, shown in Figure 4, are considered good values and a guarantee of correct
matching. Instead, with higher values, such as more than 300 s, the probability
of a wrong detection increase. To increase the precision of the algorithm, it
is possible to decrease the values for the parameters T and R, to reduce the
wrong detection, but in this way also the false negatives increase. In fact, if
for instance the user is in a station, there could be a long time without signal
or there are only data with low accuracy, then high values of T and R are
required.
In Figure 5 for each detected stage the sampling frequency of the trip and
the value of TimeDifference is plotted. The sampling frequency of the trip is



Fig. 4 Distribution of TimeDifference for all the detected stages in the dataset (grouped
each 20 s)

Fig. 5 Sampling frequency and TimeDifference for each detected stage.

shown, because the mode detection principally relies on the two extreme points
of the stage, that are detected during the trip segmentation. Moreover, gaps of
signal greater than 10 minutes are not considered for the sampling frequency
as for the trip segmentation. It is possible to see that there is not a specific
relationship between sampling frequency and TimeDifference, demonstrating
that the quality of the mode detection algorithm is not dependent from the
sampling frequency. In Figure 6 the TimeDifference is grouped for stages of the
same user and the average sampling frequency for all users’ trip is shown. No
relationship has been found between the users’ sampling frequency and the
mode detection quality, demonstrating that the variation of TimeDifference



Fig. 6 Values of TimeDifference for all the detected stages, grouped by user. The orange
dot is the mean value. The number of detected stages and the average sampling frequency
for all user’s trip are shown.

among different users depends principally on external factors like the user’s
travel behaviour or his main locations, that can alter the data.

8 User’s behaviour in case of disturbances

With the mode detection algorithm described in the previous sections, it is pos-
sible to identify the users’ main activities and how their trips are performed.
In that way, looking in the history of the user’s travel data, different mobility
patterns can be discovered. In Figure 7 are shown all the movements of a user
for 25 days. The user’s home and his second main location (workplace) are
easily recognizable and there is a clear pattern in the user’s morning trips
from house to work. There is also the same pattern in the opposite direction
in the evening, even if it is less regular than in the morning.
Discovering these patterns, it is possible to detect anomalies in the user’s be-
haviour and then check in the public transport data if there was a disturbance
that involved the user’s usual transport means. For instance, in Figure 7 the
morning trip of 1th March 2018 is two times longer (≈ 56 minutes) than usual
(≈ 33 minutes) and it is performed with three different transport means and
long walks. In that day, in Zürich it was snowing and most of the streets
were closed to traffic, resulting in huge delays and cancelled runs in the public
transport network. For that reason, the user had to take a different path longer
than the usual route to reach the destination.
During the study period there were no relevant disturbances in the public
transport network of Zürich and no respondent has been identified as involved
in a major disturbance. Nevertheless, the example in Figure 7 shows how it
is possible to understand the users’ behaviour in case of disturbances. In par-



Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have
the same color, that goes from red to yellow according to the time spent in the activity. A
white space indicates absence of signal.

ticular, after detecting users’ mobility patterns or common trips, it is possible
to detect anomalies and check in the public transport data if there was a dis-
turbance. In that case, it is possible to analyse how the users reacted to the
disturbance, if they chose the shortest way, or if they were not informed about
it and then they took a long time to react.

9 Discussion and Conclusions

With this work it is confirmed that GPS data collected from smartphones are
a powerful means to understand users’ travel information, compared to tradi-
tional travel survey methods. Moreover, we have overcome the main obstacles
that arise using the smartphones for this purpose: we used a low-battery con-
suming application that does not affect the daily use of the smartphone; we
also showed that is possible to collect users’ travel information only with low-
frequency and low-precision GPS data. In fact, specific algorithms for activity
detection, trip segmentation and mode detection have been designed to deal
with this type of data. Regarding the mode detection, our technique is to-
tally different from what is found in the literature: in fact, most of the work
is based on supervised learning, requiring a lot of efforts to manually label
the data. Instead, our algorithm only relies on the combination of user’s GPS
data with the transportation network data, and it is also able to perform an



exact vehicle imputation. Moreover, this paper represents an original attempt
to use the realized data of a public transportation network for a travel survey
purpose. We also introduced a way to exploit the user’s past data to improve
the mode detection algorithm. In fact, it is shown clearly that information
about the user’s past movements and main locations can be used to better
understand the user’s future behaviour. Finally, we showed how it is possible
to exploit anomalies in mobility patterns to identify which disturbances in the
network affected a user. With this work we demonstrated the feasibility of
build travel surveys with low costs and without any negative impact on the
users, opening the way for a future study based on a large scale dataset, that
will lead to a different manner to conduct travel surveys. We will be able to
extract different patterns and to shed some light on understanding choices of
travellers that can not be derived from a small dataset. In that way, it will be
possible to analyse why people make some travel choices and what are their
main criteria for these choices. In a future work we will also include in the
mode detection algorithm a way to distinguish private vehicles between cars
and bicycles, based on speed patterns and the user’s past data. Furthermore, a
future goal will also be to automatically detect mobility patterns and anoma-
lies in the user’s travel behaviour in order to better identify disturbances in
the transport network and how passengers react to them and to the mitigation
action undertaken by operators.
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