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Abstract In real-time, dispatchers have the challenging task to perform rail-
way traffic management. The goal is to update the timetable in order to reduce
delays in case of unexpected events, by means of rescheduling or rerouting
some of the trains. In order to support them in making decisions, a Traffic
Management System (TMS) is required that is capable of predicting train
movements, detecting potential conflicts and deciding on how to prevent these
conflicts. A conflict occurs when two trains require the same part of the in-
frastructure at the same time. However, for dispatchers it is almost impossible
to anticipate the impact of their preventing actions on the entire network.
This paper therefore examines the dynamic impact zone created and used in
a retiming/reordering heuristic. This heuristic is part of a conflict prevention
strategy (CPS) aimed at assisting dispatchers by considering the relevant part
of the network and the traffic when preventing conflicts. The CPS is extended
such that also passenger delays and cancellations of passenger trains can be
considered. This CPS is validated on a large study area of the Belgian net-
work. The proposed CPS outperforms FCFS by, on average, 41 % in secondary
delays and 33 % in passenger delays while delivering solutions in 2.1 seconds
on average and in 12.3 seconds at maximum.
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1 Introduction

The growing need for sustainable transport entails a growing interest in public
transport. Therefore, the quality of train services should be enhanced such that
railway companies attract more passengers. This requires a robust timetable
and as few delays as possible in real-time. A timetable ensures that two trains
should not conflict with one another, so no two trains need the same part of
the infrastructure at the same time. However, during daily operations, trains
can suffer delays due to, e.g., mechanical failures. Once trains start deviating
from their original schedule, conflicts can start appearing.

During the past years, many academic methods have been developed to
improve real-time railway traffic management (e.g., Corman and Meng, 2013;
Cacchiani et al., 2014; Pellegrini et al., 2016). Recently, some methods have
been implemented in practice on limited networks (e.g., Borndorfer et al.,
2017). However, a large gap still exists between the state-of-the-art traffic
management in academic research and the state-of-the-art in practice. This
shows that many challenges arise when putting academic research in practice.

Some infrastructure managers start using advanced Traffic Management
Systems (TMS) as a decision support system for their dispatchers (Dolder
et al., 2009). Such TMS is only capable of predicting train movements and
detecting conflicts. There is no decision support available to prevent or resolve
these conflicts. Therefore, a Conflict Prevention Module (CPM), including a
Conflict Prevention Strategy (CPS), is required, capable of resolving conflicts
such that it can be easily integrated into a current TMS.

This paper proposes a CPS capable of preventing, in a fast way, detected
conflicts in large and complex networks. The contributions of this paper are
threefold. First, the dynamic impact zone is created more efficiently to make it
applicable for larger networks. Second, the very fast Conflict Prevention Strat-
egy is adapted to include passenger numbers. Third, the options for resolving
conflicts are extended by also allowing trains to be canceled.

Section 2 starts with explaining some important definitions required for the
remainder of the paper. A short literature review is included in Section 3 (for
a more extended review, we refer the interested reader to Van Thielen et al.,
2018). Section 4 explains the conflict resolution methodology and discusses all
extensions included in the CPM. Section 5 shows the results of these extensions
on a very large and complex network. The paper is concluded in Section 6.

2 Definitions

In this section, a number of concepts are discussed in order to define the scope
of this research. A railway network can be considered either on a microscopic
or a macroscopic level. The microscopic level includes every detail concerning
switches, tracks, signals, etc. This level is important for both train drivers and
dispatchers. The macroscopic level is a simplification of the microscopic level
and is often closely related to what passengers experience.



Every signal indicates the beginning or the end of a block section. The part
of the infrastructure between two subsequent, similarly directed signals thus
determines a block section. These two signals fix the size of the block section,
which is typically around 1000 meters in Belgium. A switch divides a track
into two, and enables a train to be guided from one track to another track.

The network can be further decomposed into two types of areas: a station
area and a non-station area. A station area is located around a platform area
where passengers can debark or embark a train. There are switch areas before
and after the platforms such that many possibilities are available for a train
when entering or departing the station area. A station area then typically
consists of a switch area, a platform area and a switch area. This allows to
reroute trains in station areas. All areas that are not station areas are assumed
to be non-station areas.

In this research, trains are assumed to drive from signal to signal (and block
section to block section). The signal gives information on the next section. A
green signal indicates that the next two sections are available. A double yellow
signal implies that the following section is available, but the one following that
section is occupied by another train. A red signal indicates that the next block
section is occupied by another train. In practice a train has to slow down after
a double yellow signal and stop at a red signal. In this research trains can only
move on if the two following block sections are available.

According to Hansen and Pachl (2008), a block section is exclusively oc-
cupied by one train during a time interval. This time interval starts at the
reservation time and ends at the release time. A conflict occurs whenever two
blocks overlap in the time-distance diagram. The timetable determines the
route of a train, i.e. the sequence of block sections.

3 Literature review

Recently, many research has been devoted to the Conflict Detection and Reso-
lution problem (CDR). However, only few approaches have been implemented
in practice implying that there is still a large gap between state-of-the-art in
practice and in academics (Caimi et al., 2012), especially for dealing with large
and complex networks.

Macroscopic approaches have been developed, but these approaches do not
deliver a clear and direct resolution to a particular conflict (Meng and Zhou,
2011). Therefore, a feasibility check needs to be included to assure that these
resolutions can also be applied to the microscopic network. On the contrary,
microscopic approaches deliver resolutions that are on the precision level re-
quired for dispatchers. These solutions can be immediately implemented in
TMS. In this research a microscopic detail in infrastructure and timetable is
used.

There are several approaches found in the literature to solve the CDR, prob-
lem. The CDR problem can be modeled as a blocking (or no-store), no-wait job
shop scheduling problem (Mascis and Pacciarelli, 2002). Some approaches use



an alternative graph to model this problem (D’Ariano et al., 2007). A state-
of-the-art TMS has been developed in this stream, called ROMA, capable of
rescheduling and iteratively rerouting trains in a limited network. Different
approaches for rescheduling are included in this TMS (D’Ariano et al., 2008,
Corman et al., 2010a, Corman et al., 2010b, Corman et al., 2012, Quaglietta
et al., 2013).

Another stream of research solves the CDR problem by creating a mixed
integer linear program (MILP) (Térnquist and Persson, 2007; Pellegrini et
al., 2016). The academic decision support tool RECIFE uses RECIFE-MILP
for solving the CDR problem for a time horizon of 20 minutes (Pellegrini et
al., 2016). This optimization model considers all possible routes for all trains,
which is very time consuming. Therefore, Sama et al. (2017) introduce a meta-
heuristic algorithm to deal with the real-time train routing selection problem.

Borndorfer et al. (2017) summarize some successfully implemented ap-
proaches that are or were in operations. For instance, a method based on
the approaches presented in Lamorgese and Mannino (2015) and Lamorgese
et al. (2016) are currently in operations in several systems in Italy and Latvia.

All the previous mentioned methods have not been proven to be effective
on large networks. Therefore, Van Thielen et al. (2018) proposes a CPS that
is capable of delivering fast and good resolutions in a real-size network, when
a conflict is detected by an advanced TMS. For every detected conflict, a dy-
namic impact zone is constructed and considered when preventing the conflict.
This dynamic impact zone includes all trains and conflicts that are potentially
affected by the resolution of the detected conflict. This paper proposes and
evaluates several extensions to the dynamic impact zone that should assure
the applicability on larger networks. Additionally, the CPS is extended such
that passenger numbers can be considered and trains can be canceled.

4 Conflict resolution methodology

When a conflict is detected by TMS, it will be sent to the Conflict Prevention
Module. If the conflict is located in the station area, the rerouting optimiza-
tion is started to try to minimize the secondary delays by giving alternative
routes to (some of the) trains. As soon as an optimal solution is found, this is
implemented. Otherwise, this optimization is limited by a maximum compu-
tation time. When this time limit is reached, the best found feasible solution
is implemented. If the conflict is located in a non-station area or if the conflict
could not be resolved by rerouting, the retiming heuristic is started. This re-
timing heuristic starts by creating a dynamic impact zone including all other
conflicts and trains that might be affected by the resolution of the conflict.
Then, a simplified progress examination is started with only the trains present
in the dynamic impact zone. This progress examination is executed for every
possible conflict resolution. During this examination, the total delay of all
considered trains is summed up. Then, the resolution attaining the least total
delay is chosen and returned by the CPM.



In the next subsection, we will discuss the update in the rerouting opti-
mization for dealing with passenger numbers and connections between trains.
Then, the creation of the dynamic impact zone is looked upon in more detail,
and adapted to keep the computation time low when enlarging the network.
Subsequently, the adaption to including passenger numbers in the DIZ heuris-
tic is discussed. Lastly, the option of canceling trains is added to the DIZ
heuristic.

4.1 Update of the rerouting optimization

The rerouting optimization is based on a flexible job shop problem and is built
in Cplex. During the optimization, only changes inside the station area are
considered, not in the rest of the network. This means that the lines on which
all trains will enter and leave the station area and also the current position
of the different trains already in the station area, are fixed. The rerouting
starts from the situation in the station area, one minute after the moment of
detecting the conflict (the control delay), whereas the end time is the latest
departure time of one of the conflicting trains from the station area. The
rerouting optimization considers all trains passing this station within this time
period. As long as a train has not started its route in the station area, its
planned route can be changed.

The complete mathematical model used for rerouting is available in the
appendix, together with an explanation of all parameters and variables. It is
discussed in detail in our previous paper (Van Thielen et al., 2018). This section
only describes and motivates the changes made to the previous mathematical
model. First an alternative objective function is discussed which is used when
the objective of the CPM is changed to minimizing passenger delays. Let
PD; be the passenger delay of train t. The passenger delay is measured as
the delay of a train times the number of passengers affected. The number of
passengers affected is determined by taking the average number of passengers
right before and after the stop at the current station, which is denoted by
PN;. The objective function then becomes
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The second term of the objective function, with x; ¢, assures that the origi-
nal route from the train is preferred if the passenger delay cannot be decreased.
The rerouting optimization is also extended to take connections between trains
into account. Three different types of connections are considered: coupling, de-
coupling and making a turnaround. Dependent on the type of connection, some
additional constraints need to be imposed on the mathematical model.



If trains couple at a station platform, both trains should be allowed on the
platform and they will departure from the platform as one train. Denote this
train by ?;. The coupled train ¢, cannot depart before the two trains ¢; and ¢;,
that are coupled, both have arrived at the platform plus an additional service
time may, +;. The block section including the platform is denoted by b,. The
block sections before and after the platform are denoted by b, — 1 and b, + 1
respectively.

DTy, b, = DTy, p,—1 +mag, 1,V by € By, ti,t €T, (ti,tk, ‘coupling’) € A.
DTy, v, = DTy, b, -1 + may, 1,,Yb, € By, t;,tp € T, (t;,t), ‘coupling’) € A,

with DTj, 5, the departure time of train ¢, from block section b, and A the
set of all connections.

If a train t; decouples at a station platform, two trains t; and ¢, will
depart from the station. The order in which trains depart is fixed based on
how the trains are physically coupled. Assume that train ¢; departs first from
the platform. In that case, the additional constraints are:

DTy, », = DTy, p,—1 +may, 1, Vby € By, ti,t; €T, (ti7tj, ‘decoupling’) € A.
DTy, v, > DTy, 1,V b, € By, tj,t;, € T, (t;,t), ‘decoupling’) € A.

In case a train t; has a turnaround at its terminal station, it is necessary
that ¢; remains occupying the platform until the connected train t; takes over.
Therefore train ¢; should start reserving the block section immediately when
t; releases the block section.

ARti,bp = SRtj,bpapr € By, t;,t; €T, (ti,tj, ‘turnaround') €A,
DTt]-,bp > SRt]»,bp +mits; b, + mag,,t;,Vbp € Bp, ti,t; €T, (ti,tj, ‘turnaround') €A,

with ARy, 5, the release time of train ¢; on block section by, SRy, 5, the reser-
vation time of train ¢; on the same block section and mt;; p, the minimum
travel time of train ¢; for block section b,,.

4.2 Creation of the dynamic impact zone

If the rerouting optimization does not resolve the conflict or the conflict is
not located in a station area, then a resolution based on retiming and/or
reordering a train needs to be proposed. The retiming heuristic introduced in
Van Thielen et al. (2018) is based on a dynamic impact zone, and therefore
called the Dynamic Impact Zone (DIZ) heuristic. This dynamic impact zone
is based on offline calculations determining which conflicts are most likely to
take place and on a set of potentially conflicting trains, which normally use the
same infrastructure as the conflicting trains within a time range of 15 minutes.

The initial conflict is the conflict that is detected by TMS and sent to the
CPM. A first order conflict is a conflict that contains (at least) one of the



trains in the initial conflict. In general, a nth order conflict is a conflict that
contains (at least) one of the trains in a (n — 1)th order conflict, but it is not
a (n — 1)th order conflict itself. Figure 1 shows an example network with an
initial conflict, first, second and third order conflicts.
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Fig. 1 Small network with different conflicts indicated by a geometric shape. The square
indicates the initial conflict. A circle marks a first order conflict, a diamond a second order
conflict and a triangle a third order conflict. Full line shapes indicate the most likely conflicts.
The names of the relevant switches are indicated below the shape.

The first train in the conflict is the train requiring the block section where
the conflict takes place, first. The second train is then the train that wants
to occupy the same block section second. A conflict can be resolved in two
ways: delaying the first train or delaying the second train. The proposed DIZ
heuristic examines both resolutions to the conflict by looking at a simplified
progress of the next half hour during which all conflicts are solved by FCFS.
Naturally, this examination should be limited in time and space because the
computation time is restricted, for usage in practice. Therefore, only relevant
parts of the network/traffic that are assumed to be impacted by the solution
of the current conflict should be taken into account. These relevant parts are
captured in the dynamic impact zone. The dynamic impact zone includes all
potentially conflicting trains in first order conflicts and second order most
likely conflicts. The remainder of this section focuses on improvements of this
standard DIZ heuristic.

4.3 Limiting the dynamic impact zone

The dynamic impact zone includes all first order conflicts and second order
most likely conflicts. However, previous research (see Van Thielen et al., 2018)



showed that only about 10 % of all conflicts present in the dynamic impact
zone are actually detected as a new conflict during the examination progress.
Moreover, the computation time of the heuristic is mostly related to the num-
ber of conflicts included in the dynamic impact zone and much less related to
resolving these conflicts (with FCFS). Therefore, it is important to try to re-
duce the number of conflicts considered to only those that are likely to happen
with the current delays of the trains. So we try to limit further the conflicts
and trains considered in the dynamic impact zone to those actually affected
by the resolution of the initial conflict. This subsection includes two measures
taken to further limit the number of conflicts considered in the dynamic impact
zone.

4.8.1 Updating the potentially conflicting trains

The dynamic impact zone is based on the offline-determined set of potentially
conflicting trains, which are, on average, frequently conflicting. However, at a
particular time, some potentially conflicting trains can still be on schedule or
significantly delayed, and therefore not be potentially conflicting. Therefore,
their current timing, including all known delays up to the time instant of
detection, are considered when determining whether the offline-determined
potentially conflicting trains should still be considered as such. This feature is
illustrated with an example.

Ezxample

Figure 1 shows a small network where ten trains are driving from left to right.
The square indicates the initial conflict detected by TMS. All other conflicts
are potential conflicts, i.e. conflicts between potentially conflicting trains. This
implies that on average these conflicts take place frequently, but also that
these conflicts might not take place in real-time when a certain initial conflict
is under evaluation. The corresponding blocking times of all trains on the
switches indicated are stated in Table 1. These blocking times include all
delays known up to the current time instant, i.e. the time instant that the
initial conflict is detected.

The initial conflict is detected at 06:55:00. All potential conflicts are sit-
uated in the future. Looking at the current situation, only one conflict in
addition to the initial conflict will actually take place in the future: 77 and T3
will conflict on swy.

Previous research did not include a real-time update of the potentially
conflicting trains. The limitation was made by the time limit of the progress
examination and the order of the conflicts. When looking at Figure 1, all con-
flicts with a circle and diamond with a full line were considered in the dynamic
impact zone previously. Trains 77, Ts, T5, Ts, T7 and T19 were taken into ac-
count during the progress examination. However, due to previous delays it is
possible that some trains are not potentially conflicting anymore at the cur-
rent time instant. Including less trains in the progress examination will reduce



the computation time for the DIZ heuristic. Therefore, the information is now
updated and it is checked which trains still have a potential conflict within a
time range of v minutes. Assume that v = 5. First, the first order conflicts
are looked upon. Clearly, the conflict between T and Tj is not a potential
conflict anymore. Therefore, Tg will not be included in the dynamic impact
zone when assuming v = 5 minutes. Also, the conflict between T3 and T7 is
not considered. The set of trains in the dynamic impact zone is now limited
to 11, Ty and T3. So, we invest a little more computation time in updating
the set of potential conflicts and this should save us more computation time
when considering the conflicts during the progress examination and lead to
(at least) the same quality of results.

To | Ty | switch | Start-end of blocking time T, | Start-end of blocking time T}
T | T | swa | 07:01:00 - 07:02:30 | 07:00:30 - 07:01:15
T | T3 | swa | 07:04:00 - 07:05:00 | 07:04:30 - 07:05:45
T | T | swr | 07:10:30 - 07:12:00 | 07:20:30 - 07:22:15
Ts | Ty | sws | 07:02:15 - 07:03:45 \ 07:07:45 - 07:08:45
Ts | Tr | sws | 07:15:00 - 07:16:45 \ 07:08:00 - 07:09:45
Ty | Ts | swi | 07:06:15 - 07:08:00 | 07:04:00 - 07:05:00
Ts | Two | swe | 07:15:45 - 07:17:45 \ 07:01:15 - 07:03:00
Ty | Ts | sws | 07:13:45 - 07:15:00 \ 07:21:45 - 07:23:00

Table 1 Blocking times on the switches where a potential conflict is situated on the example
network in Figure 1.

4.8.2 Adding a mazximum distance from the initial conflict

The dynamic impact zone was only limited by the time in the progress ex-
amination. When enlarging the study area further, this limitation could be
insufficient to keep the computation time low. Therefore, the dynamic impact
zone is also limited in distance from the initial conflict. This extension restricts
the search further by only considering the next € km of the initial conflicting
trains, starting at the location of the initial conflict.

Figure 2 shows the small network from Section 4.3.1. There is an initial
conflict between T7 and T5. All conflicts in the corresponding dynamic impact
zone within € = 25 km are indicated in red. Compared to the standard DIZ
heuristic, there are less trains and conflicts considered in the new dynamic im-
pact zone. With € = 25 km, only trains 77, T5, T35 and T7 are taken into account
during the progress examination of the heuristic. In general, this should speed
up the calculations without reducing the quality of the solution too much.
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Fig. 2 Small network with different conflicts indicated by a geometric shape. Only the first
and second order conflicts within a distance of ¢ = 25 km are considered in the dynamic
impact zone (indicated in red).

4.4 Passenger vs secondary delays

Operations managers are typically interested most in minimizing the secondary
delays, whereas train operating companies might want to minimize the passen-
ger delays. Previously, the CPM only considered secondary delays. Therefore
the CPM is adapted in such a way that it can consider passenger delays instead
of secondary train delays.

Instead of the secondary delay, the passenger delay is considered. The pas-
senger delay equals the amount of delay a train is given due to a conflict
times the number of passengers affected at the current block section. Evi-
dently, freight trains do not receive any passenger delay. When examining the
progress, the total passenger delay is calculated and used to determine the
best conflict resolution.

4.5 Canceling passenger trains

If delays become longer, it can be beneficial to cancel a train because the train
will cause too many more conflicts in the remainder of its route. Therefore,
the DIZ heuristic is extended such that (at maximum) four possibilities are
regarded: delay the first train, delay the second train, cancel the first train,
cancel the second train. In this paper, only passenger trains are allowed to be
canceled. Trains can only be canceled at a station platform. Therefore, a train
first needs to be delayed to resolve the conflict if the conflict is not taking
place at a station platform. The train can then be canceled at the next station
where all passengers can debark, and the train can be put on a side track.



Whenever a train is canceled, its (remaining) connections need to be checked.
In case of decoupling, the two, new trains are also canceled because the first
train was canceled. In case of a turnaround at a terminal station, it is exam-
ined whether the second train should pass the station where the first train was
canceled. If this is the case, then the second train is only canceled up to this
station. The second train is then assumed to depart again, at its scheduled
time in this station, if this is feasible.

Canceling a train certainly causes annoyance to passengers, and is a mea-
sure that is considered worse than delaying a train. Therefore, canceling a
train should correspond to a certain amount of delay, denoted by ¢ minutes.
In Section 5, the effect of altering this parameter from 15 to 30 minutes is
examined.

5 Case Study

The CPS is extensively tested by the use of simulation. This simulation con-
sists of three main compoments that model a complete TMS interacting with
real life. The three components are a simulator module, a predictor module
and a CPM. Figure 3 shows how these components interact. The discrete
event simulation resembles the real-time driving of all trains. The prediction
and conflict detection resembles an advanced TMS. The CPM includes the
rerouting optimization and the DIZ heuristic. For more information on this
closed loop setup, we refer the interested reader to Van Thielen et al. (2018).

/ Conflict Prevention Module \

Discrete
event
simulation

Conflict
detected?

Pred

Fig. 3 A flowchart representing the three components within the simulation and their
interaction.



The CPM with new extensions is tested on a large and complex study area
that includes the provinces of East and West Flanders in Belgium. This mi-
croscopic network contains 130 stations and 11766 block sections. Both freight
and passenger trains are taken from the microscopic timetable of 17/03/2017.
The simulation horizon is set from 7 a.m. to 8 a.m. During this time horizon
and in this study area, there are 240 trains considered. All 51 connections tak-
ing place between these trains in practice, i.e. (de)coupling and turnarounds,
are taken into account.

Fig. 4 Study area: the provinces of West and East Flanders in Belgium.

As a standard, the prediction horizon is set to 5 minutes, the heuristic
horizon to 30 minutes and the control delay to 60 seconds (see Van Thielen
et al. (2018) for more information). The offline calculations are based on 350
runs from a delay scenario with o % of the trains delayed. The value « is
randomly taken from the interval [20%,80%]. The computation time of the
rerouting optimization is limited to 10 seconds. In order to evaluate the CPM,
different runs from a delay scenario « are taken. In one run, approximately
a% of all trains, which are randomly chosen, are given a random delay from an
exponential distribution with an average of 3 minutes and a maximum of 15
minutes. The CPM is evaluated based on the total secondary delay, the total
passenger delay and the computation time of the CPM. The total secondary
delay sums up the secondary delays of all trains at the end of the simulation
horizon or when leaving the study area. The total passenger delay sums up



the multiplication of the delay and the passengers affected at the block section
where the delay is given. The computation time of the CPS for a single initial
conflict includes the creation and execution of the rerouting optimization, the
creation of the dynamic impact zone and the execution of the DIZ heuristic
itself.

Due to a lack of realistic data, simple assumptions are made on the passen-
ger flows. Trains can either be busy or quiet. A busy train has approximately
four times the number of passengers aboard compared to a quiet train. The
passengers function is a stepwise function that changes randomly in every sta-
tion. It is assumed that the number of passengers increases until the middle
point of the trains full route. After the middle point of its route, the number of
passengers decreases. Figure 5 depicts the passenger pattern of a quiet train.

Nb of passengers

o

Fig. 5 The passenger pattern of a quiet train for its full route.

5.1 Results

The CPM is tested and compared to some basic dispatching strategies. The
most basic dispatching strategy is First Come, First Served (FCFS), where
the train wanting to reserve the block section where the conflict occurs first, is
allowed to drive first. This strategy resembles an inexperienced dispatcher. As
a second comparison, the first order heuristic is considered. This heuristic is
also based on a progress examination during the next half hour, but the impact
zone is limited to first order conflicts. This strategy thus makes no use of offline
calculations or any extension discussed in Section 4. When returning to the
example network in Figure 1, only trains T3, T3, T5 and Ty are considered
during the progress examination. Table 2 shows the results based on five runs
from random delay scenarios. This number of runs is limited, for now, due to
the long simulation times required when performing experiments. It should be



noted that the objective function used in CPS and the first order heuristic is
secondary train delays and that rerouting is also included in the CPS. Clearly,
our CPS outperforms FCFS by on average 41 % based on secondary delays
and 17 % on passenger delays. CPS also outperforms the first order heuristic
by on average 9.3 %.

Strategy SD PD
(in min) | (in passenger min)
FCFS 584 20141
First order + rerouting 376 18642
CPS 341 16681

Table 2 The average secondary and passenger delays of CPS compared to basic dispatching
strategies.

Table 3 shows the computation time of the different strategies. Clearly,
both first order and our CPS are slower than the FCFS strategy, though deliv-
ering better solutions based on both secondary and passenger delays.However,
in real-time, the computation time of our CPS is low. And with a little extra
computation time, significantly higher quality solutions are obtained.

Strategy Average computation | Maximum computation
time (in s) time (in s)
FCFS 0.02 0.2
First order + rerouting 1.5 11.3
CPS 1.7 11.7

Table 3 The average and maximum computation time of CPS compared to basic dispatch-
ing strategies.

5.1.1 Canceling trains

Allowing trains to be canceled can decrease the overall delays. Canceling a
train equals delaying a train with § minutes. The results are shown in Table
4. The average secondary delay over all trains can clearly be decreased when
considering the additional option of canceling trains. However, when the value
of canceling a train equals 30 minutes, not very often a train is canceled,
limiting the inconvenience for passengers. Decreasing the value  to 15 minutes
further decreases the secondary delays.

For the remainder of this paper, it is assumed that canceling a train corre-
sponds to giving a delay of 30 minutes. In terms of passenger delays, canceling
a train is then equal to 30 minutes times the number of passengers affected by
the cancellation.



Strategy | SD (in min) | # of canceled trains

CPS - no canceling 341 0
CPS - § = 30 min 335 0.8
CPS - 6 = 15 min 312 2.8

Table 4 Comparison of the effects of the parameter § on the overall delays.

Including the option of canceling a train, implies including (up to) two
more options per heuristic calculation. Table 5 shows the effect on the average
and maximum computation time. Clearly, including more options tends to
increase the computation time. However, the computation time still remains
low.

Strategy Average computation | Maximum computation
time (in s) time (in s)
CPS - no canceling 1.7 11.7
CPS - 6 = 30 min 2.1 12.3
CPS - 6 = 15 min 2.2 12.2

Table 5 Comparison of the effects of the parameter é on the computation time.

5.1.2 Passenger delays

Taking passenger numbers into account can lead to different results than look-
ing at the secondary delays. Therefore, the objective function of the CPM is
altered to deal with passenger or secondary delays. Table 6 shows the total
passenger and secondary delays when changing the objective function in the
CPM. Though the results are based on simplified passenger assumptions, they
show that taking passengers into account can deliver a completely different
result. The secondary delays are clearly lower in case of a secondary delay ob-
jective, but with regards to the passengers it performs worse. The passenger
objective also results in more canceled trains, mostly when trains do not have
a lot of passengers on board.

Strategy ‘ SD (in min) ‘ PD (in passenger min) ‘ # of canceled trains
CPS - secondary 335 15001 8
CPS - passenger 591 13561 15

Table 6 Comparison of changing the objective function in the CPS.



5.1.3 Effects on the DIZ

In this section, the effect of the measures presented in Section 4.3 is analyzed.
Table 7 shows the effect of updating the information during the creation of
the DIZ. The computation time decreases slightly when an update is included.
This decrease is limited due to the fact that including the update also requires
some computation time.

Strategy SD Average computation | Maximum computation
(in min) time (in s) time (in s)
CPS - no update 341 2.3 14.3
CPS - v = 10 min 335 2.1 12.3

Table 7 Comparison of including updated information for creating the dynamic impact
zone based on secondary delays and computation time.

The limitation in distance is examined by comparing values of € = 10,50
and 100 km. Table 8 shows the effects on the secondary delays and the compu-
tation time. Clearly, the computation time is lowest for the lowest value of e.
However, the secondary delays decrease when the distance is enlarged. Based
on these first experiments, the value of 50 km seems a good trade-off between
the quality of the results and the required computation time.

Strategy SD Average computation | Maximum computation
(in min) time (in s) time (in s)
CPS - € =10 km 373 1.6 11.8
CPS - € = 50 km 343 2.0 12.4
CPS - € = 100 km 341 2.3 14.3

Table 8 Comparing the effects of using different distances from the initial conflict when
creating the dynamic impact zone based on secondary delays and computation time.

6 Conclusion

This paper proposes an improved Conflict Prevention Strategy (CPS) capable
of resolving conflicts in real-time for large and complex networks. Our CPS
consists of a rerouting optimization for station areas and a retiming heuristic,
called the Dynamic Impact Zone (DIZ) heuristic. This heuristic can choose
to either delay or cancel trains. Its objective function can easily be altered to
the necessary requirements. In this paper a comparison is made between an
objective based on secondary train delays and on passenger delays.

The DIZ heuristic is extended by a speed improvement in the implementa-
tion and several other features. Passengers are taken into account when making



decisions. Passenger trains are allowed to be canceled at a certain cost in terms
of delay. Also, the creation of the dynamic impact zone is examined. These
extensions assure that the computation time of the DIZ heuristic remains low
such that the heuristic is applicable to a large and complex network.

In order to evaluate the DIZ heuristic, the CPS is tested on a large part of
the Belgian network. Results show that our CPS can outperform FCFS by 41 %
when considering secondary delays and by 33 % when considering passenger
delays. The computation times remain low on this large network. Conflict
resolutions are delivered on average within 2.1 seconds and in a maximum
time of 12.3 seconds. Without considering the additional option of canceling
trains, resolutions are delivered within 2.3 seconds.
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A Appendix

This appendix describes shortly the full mathematical model of the rerouting optimization.
A previous version of the model is extensively described in Van Thielen et al. (2018).

The parameters of the model describe the real-time situation of all trains in the station
areas.



T = {t1,...,t/7|}, set of trains with |T'| the number of trains.
R ={r1,...,7R|}, set of routes with |R| the number of routes.
R: C R = set of routes train ¢ can take.
C = {((bi, ti,m:), (bj, tj,7;)) | bi and b; are block sections, that share
a part of the infrastructure or that are identical, with b;
belonging to route r; from train ¢; and b; to route r; from train ¢;}
A ={(ti,;tj,y) | t; and t; have an association of type y in this station area}
By = {bp,,...,bp, }, set of all block sections having a platform, with n the number of
platforms in the station area.
6t = earliest time instant at which train ¢ can start reserving the first block
section in the station area.
mry , = minimum reservation time required for train ¢ before entering block section b
mt; , = minimum travel time required for train ¢ to travel through block section b
mcy , = minimum clearing time required for train t to leave block section b
mag;t; = minimum association time between trains ¢; and ¢;
nbBS, = total amount of block sections in route r of this station area.

The subset R; includes routes that start and end at the predetermined signals of train ¢
when, respectively, entering and leaving the station area. Note that d¢ is the start reservation
time instant determined by the timetable and the imposed delay on train ¢ at the current
time. This model also uses block section 0, indicating the block section just before the station

area. The sum of mry , mt, , and mc, equals a block in the blocking time theory.
The decision variables are now introduced.

1 if train ¢ takes route r € Ry,
0 otherwise.

SRy p = actual start reservation time of train ¢ on its b-th block section
in the station area.
DTy, = actual departure time of train ¢ from its b-th block section in the station area.

ARy p = actual release time of train ¢ on its b-th block section in the station area.

)

SD; = secondary delay of train ¢ measured in this station area.

PD; = passenger delay of train ¢t measured in this station area.

Note that SRy 1 differs from §; in the fact that SR; 1 can include additional delays due to
conflicts in the station area. The index 0 in variable x4 o corresponds to the current route
of train t. The non-binary decision variables are expressed in seconds.

As an objective function, a choice needs to be made between minimizing the secondary
delays or the passenger delays. In case the secondary delays are minimized, the objective

function becomes
||

. Zt,0
minimize Z (SDt — 7), (5)
t=1
nbBS,
with SD;y = DTt,anST — (5t +mry 1 + Z mtt7b>.
b=1
In case the passenger delays are minimized, the objective function equals

|T|

minimize tz::l (PDt - xt—K’O>, (6)



nbBS,
with PD; = PNy x DTy pps, — (6t tmrel+ S mtt,b)A
b=1

The mathematical model also requires constraints to assure that any solution is feasible.
The first constraints assure the minimum duration according to the blocking time theory.

SR¢1 > 6, VteT
If 2t » ==1, then DT} 1 > SRy + mryp, YVt €T, b=1,...,nbBS,
If 2t » == 1, then DT}, > DTy 1 +miyp, V€T, b=1,...,nbBS,
If 2t » == 1, then ARy > DT}, + mcep, VE €T, b=1,...,nbBS,.

Every train in the model should use exactly one route:

> @iy =1,VteT
rER¢

Two trains sharing an connection at the given station area, should always use the same
station platform.

If by € 7; ANbp €7, then x¢, », = 1t v (ti,tj,y) € A.

GoTg0

Dependent on the type of connection, different constraints need to be imposed. These
constraints are already described in Section 4.1.

DTtk,bp > DTti,b,,—l +may, t,,Vbp € By, t;,ty €T, (ti,tk, ‘coupling') € A.
DTy, b, > DT, b, —1 +mat; 1),V by € By, tj,t, € T, (tj,t, ‘coupling’) € A,
DTy, b, > DTy, b, —1 +mat,t;,Vbp € By, tist; € T, (
DTy, b, > DT, b,V bp € By, tj,t, € T, (Li, ty, ‘decoupling’) € A.
ARy b, = SRy b,,Ybp € By, ti,t; € T, (
DTy, b, > SRi; b, +mii; b, +mat, ;,¥by € By, ti,t; €T, (

ti,tj, ‘decoupling') € A.

t
ti, 15, ‘turnaround/) €A,
t

ti,tj, ‘turnaround’) € A,



